高考数学资讯,高三数学有哪些知识点

一、高考数学的万能解题方法有哪些

平时做数学题的速度慢,考试的时候速度会更慢。因为考试比较容易紧张,不仅速度慢,还可能会把自己原本会做的题做错。因此掌握一些数学的解题方法尤为重要。下面是我分享的高考数学的万能解题方法,一起来看看吧。

高考数学的万能解题方法

熟悉基本的解题步骤和解题方法

解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程式,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。

审题要认真仔细

对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取资讯量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些资讯,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。

常见函式值域或最值的经典求法

函式值域是函式概念中三要素之一,是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终.而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求。所以,我们应该掌握一些简单函式的值域求解的基本方法。

学会画图

画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。

因此,牢记各种题型的基本作图方法,牢记各种函式的影象和意义及演变过程和条件,对于提高解题速度非常重要。

离心率的求值或取值范围问题

圆锥曲线的离心率是近年高考的一个热点,有关离心率的试题究其原因,一是贯彻高考命题“以能力立意”的指导思想,离心率问题综合性较强,灵活多变,能较好反映考生对知识的熟练掌握和灵活运用的能力,能有效地反映考生对数学思想和方法的掌握程度;二是圆锥曲线是高中数学的重要内容,具有数学的实用性和美学价值,也是以后进一步学习的基础。

极端性原则

将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

数列求和方法

数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。

高考数学解题时的注意事项

1.精选题目,避免题海战术

只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

2.认真分析题目

解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联络的桥梁,也就是在分析题目中已知与待求之间差异的基础上,消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。

3.做好题目总结

解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

1在知识方面。题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

2在方法方面。如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

3能否归纳出题目的型别,进而掌握这类题目的解题方法。

高考数学解题策略

1注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

2答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的***和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。

3数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函式的性质、数列的性质就是常见题目。

4挖掘隐含条件,注意易错易混点,例如***中的空集、函式的定义域、应用性问题的限制条件等。

5方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值含特殊值、特殊位置、特殊图形、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。

6控制时间。一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。

二、高三数学有哪些知识点

高三数学的基本知识点和公式有哪些?不知道的考生看过来,下面由我为你精心准备了“高三数学有哪些知识点”仅供参考,持续关注本站将可以持续获取更多的资讯!

高三数学有哪些知识点

高三数学知识点

1、忽视集合元素的三性致误

集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

2、判断函数奇偶性忽略定义域致误

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

3、函数零点定理使用不当致误

如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。

4、函数的单调区间理解不准致误

在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

高中数学公式

1、十倍角公式

sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))

cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))

tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)

2、万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

3、半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

4、和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

cotA+cotBsin(A+B)/sinAsinB-cotA+cotBsin(A+B)/sinAsinB

5、某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R注:其中 R表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB注:角B是边a和边c的夹角

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

拓展阅读:高中数学题型解答方法

三角函数题型解答

这个题型有两种考法,大概10%~20%的概率考解三角形,80%~90%的概率考三角函数本身。

(一)解三角形不管题目是什么,作为被考察者,你要明白关于解三角形,你只学了三个公式——正弦定理,余弦定理和面积公式。所以,解三角形的题目,求面积的话肯定用面积公式。至于什么时候用正弦,什么时候用余弦,如果你不能迅速判断,都尝试一下也未尝不可。

(二)三角函数三角函数,套路一般是给出一个比较复杂的式子,问函数的定义域、值域、周期频率和单调性等问题。

立体几何题型答题技巧

相比于前面的三角函数,立体几何题型要稍微复杂一些,可能会卡住一些人。该题通常有2-3问,第一问求某条线的大小或证明某个线/面与另外一个线/面平行或垂直,最后一问求二面角。

这类题解题方法主要有两种,传统法和空间向量法,其中各有利弊。

(一)向量法:使用向量法的好处在于没有任何思维含量,肯定能解出最终答案。缺点是计算量大,且容易出错。

应用空间向量法,首先应该建立空间直角坐标系。建系结束后,根据已知条件可用向量确定每条直线。其形式为AB=(a,b,c)然后进行后续证明与求解。

(二)传统法:学习立体几何章节,虽然学了很多性质定理和判定定理,但针对高考立体几何大题而言,解题方法基本是唯一的,除了上图6和8有两种解题方法以外,其他都是有唯一的方法。所以,熟练掌握解题模型,拿到题目直接按照标准解法去求解便可。

另外,还有一类题,是求点到平面距离的,这类题百分之百用等体积法求解。

数列题型怎么答

从这里开始,题型难度开始明显增加,但只要掌握了套路和方法,同样并不困难。数列的考察主要是求解通项公式和前n项和。

(一)通项公式观察题目中给出的条件形式,不同形式对应不同的解题方法。

通项公式的求法我给出了8种,着重掌握上图中的1、4、5、6、7、8,其实4-8可以算作一种。除了以上八种方法,还有一种叫定义法,就是题中给出首项和公差或者公比,按照等差等比数列的定义进行求解。

(二)求前n项和求前n项和主要有四种方法——倒序相加法,错位相减法,分组求和法,裂项相消法。同样,每种方法都有对应的使用范围。

当然,还有课本上关于等差数列和等比数列求前n项和的基本方法,请大家牢记掌握。

三、出卷人是如何把高考中一道数学/物理压轴题设计出来的

出卷人是如何把高考中一道数学/物理压轴题设计出来的?

比如但不限于:如何把书本上的一条条知识点一点点演变成一道大题?考生不熟悉、没见过的新题目是如何被设计出来的?【acel rovsion的回答(102票)】:谢谢邀请。。其实压轴题并不神秘,但是考虑到各省的出题方式其实差别还是蛮大的,我列举一下吧,其实上面已经答了一些了。一,通过一个既有的模型,数学结论,物理实验,物理现象,通过列举简化,或者给出相关资讯,来达到可以用教材知识思考的程度,有时候干脆直接出成理想实验题目或者资料类题目,这类题目往往突出的是细节,因为元素众多。二,大跨度改编。这个很好理解,就是明说了就将必修教材上某些常见的套路题进行大跨度改编,主要的方法分这么几种,1,隐藏条件,明明在教材上是条件明了的题目,将条件的给出门槛加高,使得一个问题被改变成数个小问题组成。2,在证明题方面将一些常见(练习题中会碰到)但是必修教材上没有的“结论性知识”做成条件。3,干脆将一些必要条件给删掉,变成“讨论题”,让学生分析细节,并对条件进行分类来答题。4,复杂化图形或者构件,这个在解析几何中比较多,主要考察数形结合。5,发散性题目。此类题目的方式,大概是把一个本来都被参考书玩烂了的东西,通过一种“新问题”的方式展现出现,甚至可能设多余条件恶意引导。三,组合嫁接。这个很简单,就是将几个单独的问题在一起,通过逆向推理的方法糅合成一个题目。而需要的就是学生要能够还原这个问题的本质,然后分开解决。这个在物理题目中特别常见,尤其是很多所谓的物理压轴题:不是把不同的运动过程组合在一起,就是把不同的状态以及条件融合在一起。比如那类又有多重的运动过程,又有电磁状态转换,又有条件变化的“大题”》四,方法或者思维组合,高中教育虽然老师通常会教你数学方法,比如什么是数形结合,什么是整体归一,等等,但是这些东西并不会系统的教给你,甚至有些极端一点的老师会让你去扫大量的题目来自己领悟。所以将集中思维方法结合在一起,也是很可以提高“区分度”的方法。举个例子,比如“简单的数列题就是要么等比要么等差,难一点会需要你将数列“解构”一下,然后再发现是等比还是等差。那么如果我们要恶心一点了,造这样一个数列,首先需要解构三次才能“还原”,而且还原过程中涉及到“解构项”本身数列的求和,其次他不是逐项等差或是等比,而是任意三项组成等比,端头和中间组成等差,而设计另一组同样恶心的数列,然后和原数列交叉对应。最后莫名其妙地给一个诱导公式,和第三组数列相关,最后第二组和第三组数列涉及在K+1项上的数学归纳”OK,这样一个恶心人的数列压轴题就出来了,题中涉及到突出转化,整体归一,分类讨论,归纳分析四种数学方法。然后学生看到就头大了。五,涉及特殊化的讨论。这个在数列题目甚至解析几何题目中都很常出现,就是一个非常复杂化的重合表示式或者图形,过程是分段或者分类的,你需要自己设计一些特殊化的情况才能对其解构分析,最典型的就是取特殊值和特殊点。当这个特殊化情形和方式越复杂,就能成为一道压轴题。六,数学化的能力和表述形式复杂化。这个原先只是出现在应用题,但是现在高考,尤其是录取率比较低的省份诸如江苏,山东,四川,两湖,两河之类的省份来说,应用题实在太拉不出差距了。所以就把这一套东西用在解析几何上或者数列上。这个还思路还比较新,一般的情况就是给你一个影象或者数列,然后“口头叙述一整段变化过程,口语化程度非常高“,考察你是否能够归纳成数学问题。七,这就是上面某位仁兄提到的,通过程式化的东西来倒推。比如利用简单的程式模型,造一个数列出来让你解,或者造一个莫名其妙的影象出来让你解。这个大部分情况下,是增加”技巧性“难度,这种情况尤其是在数列中比较多,解题思路简单,但是工程量大,而且途径单一,不容易想到。最后提一些其他的,大部分省的题库不是用来抽题的,而是将市面上的参考书等等东西涉及到的题目全部装在题库里面,用于参照,以免出现”重复题“或者”类似题“。其次,并非出题目的都是”大学老师“,大部分都是教育专业相关人士或者某些不在职的中学教师组成的”高考命题专家组“,一般来说,会有短一个月,长到两个月左右的”出题时间“,这段时间都有相对严格的保密措施(极端点可能包括限制出行),而且使用”分散出题“,所以除了专家组领导以外,大部分老师是不知道”最终版本“的卷子是什么样子的。最后,高考题目往往不止一套,标配是三套-五套。有些省,曾经会对于一套卷子的”难度分析“会通过组织一些”学生“(来源比较复杂,但是绝对保密筛选,而且水平必须参差不齐,互相有水平区分),来做一些”卷子“(不会是原版的高考卷子,而是将高考某一两道题目加以改编,夹杂在大部分题库题目里面,这样组成卷子)。从而来统计得分率和失误率。但是这一项措施大部分是在”省份自主命题“或者”课改“的时候,某些地区会做的手法,但是绝大部分情况下是不会出现的。【曾昭颢的回答(1票)】:以江苏物理举栗江苏物理一般都是拿真实存在的元件或者模型,进行简化一下,简化到高中生能做的水平,因为随便一个元件里面都包含了很多东西,而且考生都绝壁没见过。【张秉宇的回答(2票)】:我大一的时候有位老师曾参加过高考命题。有一次他给我们简单提过一点,不是很多,希望对题主有帮助。(时间略久,以下不是他的原话,是我的演绎)他是基本遵从这样的方式,从简单的结论出发,倒著给出题目。考虑一些满足题目基本方向的工作,构造一系列结论的充分条件。比如我熟知关于等比级数的一些不等式,自然就设计数列和不等式了,然后我可以找一些和等比数列相关的递推,然后配合一些不等式基本性质,这样就能简单的做出一个题目了。下面是我自己的想法刚刚说到找充分条件,因为出题的有不少是大学老师,所以自然在自己的领域内有一些不为中学生/老师所知的东西,所以会让人有耳目一新的感觉。其实不少问题是自然而直接的,只是缺乏对问题充分的了解,从而造成了难度差异。比如有个例子是一些递推数列的题目,用蛛网迭代等一些技巧,是完全程式化的,但对中学生来说,就缺乏相应的了解,在12年全国大纲卷等一些试卷中被用来压轴。——————分割线——————说两句答非所问的话,我们老师当时还跟我们讲,他们命题组做的第一件事就是尽可能买了市面上所有的模拟题,然后坚决不出上面的题。

出卷人是如何把高考中一道数学/物理压轴题设计出来的?拜托各位了 3Q

用一句话概括,是你学过的知识点的总和,比如说不等式,数列等,要求你不仅要掌握知识,还要善于灵活运用,所以多做一些高考真题非常非常有用!可以在课余自己整理,研究,记在一个专门的本子上,会发现其中的奥妙的!

望采纳谢谢你~

如何突破数学高考压轴题

建议收集近五年得高考题压轴题和近三年模拟题的压轴题都做做,如果程度较好的同学可以直接分别做选择、填空、大题的最后两题,就是6题,这样可以省很多时间

如何保证高考理数压轴题全部解出来

广东高考数学压轴题基本上包括:函式与导数;数列;圆锥曲线方程;不等式等。其中,函式思想渗透到每一个方面,可以这么说,函式占高中数学大半壁江山。函式一般要求单调性,可以对函式求导;数列是特殊的函式,要求通项公式,前n项和;圆锥曲线方程一般涉及直线与方程,弦长,中点,对称点,可以联立方程,应用韦达定理,设而不求等方法去求解。具体问题具体分析,没有什么一种方法可以解决全部问题的!有什么不明白可以再提问!

高考数学压轴题有多难如何答好数学压轴题

一般会很难,没有几个人能做出来。高考数学最后一道题一般是数列题,第一问一般是求通项,还算容易,如果数学学得好应该能做出来。后两问一般会比较难,短时间内很难做出来。其实很多人在150分钟内根本做不到最后一题,所以最好还是把心思放在前面的题上,把前面的题做好,也能拿高分,千万不要把时间浪费在最后一道题上。

硬币是如何设计出来的?

审定通过设计者画出的硬币图案后,有造币厂先做出柸胎模具,再进行装置压印,即为硬币。

高考,物理,压轴题,难吗

这里刚高考完,高考压轴物理的话,平常情况确实难,但没必要物理考满分啊是不是,也不排除物理这一科很容易压轴也很容易的情况,还有就是地域差异,全国卷物理难度中等,如果是江苏这种省份的话就很难了,看看他们历届本科分数线都是两三百就可以看出来,我们老师说得好物理压轴题都是给上清华北大的学生们出的,我们只要把不难的题目写对就可以了

相关推荐

相关文章